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Abstract: The stabilities of the experimentally unknown azirinyl and diazirinyl cations are 
discussed on the basis of results from ab initio molecular orbital calculations. 

The aromatic 2n-electron cyclopropenyl cation (C H+ 3 3, l_) along with numerous deriva- - 
tives has been synthesized1 but none of the isoelectronic aza-analogs, the azirinyl cation 

(C2NH:, 2) and the diazirinyl cation (CN,H+, 3) or 
- - 

ized. However, their involvement as intermediates 

.azirines 2 and halodiazirines, 3 respectively. 

In the thorough ab initio study 

energy were found, &and the propargyl 

derivatives thereof, have been character- 

has been implicated in reactions of halo- 

= 4 2 
of C3H3 

+ 
isomers by Radom et a1.4 -- only two of low 

cation (4); 1_ was calculated to be 34.4 kcal/mol 

(6-31G*//STO-3G) more stable than 4. - The published theoretical results for 1 are conflicting. 

Extended Hfickel calculations by Hoffmann5a predicted 3 as unstable with respect to ring open- 

ing to the linear diazomethyl cation (2). Pittman et il5b however, --, did not find this insta- 

bility in their TNDO study and concluded from the calculated geometries and charge distribu- 

tions, that &as well as 1 were aromatically stabilized cations. Initiated by the experimental 
- 

failures in isolating derivatives of 2 or 3273~6 
= = and the contradictory theoretical predic- 

tions,5 this work reports the results from a computational study of 2, 3, and their isomers 
-- 

using ab initio molecular orbital theory. 7 Unless otherwise noted, all structural and elec- 

tronic population data will refer to optimized geometries calculated with the minimal STO-3G 

basis set,@ while energy data refer to values obtained with the 6-31G* (split valence plus 

d-type polarization functions on C and XJ) basis setab at these geometries (6-VG*//STO-3G). 

Conjunctive usage of these basis sets has been proven to describe the geometries and relative 

energies of closed and open isomeric structures fairly accurately.' 

Four C,NH; isomers are calculated to lie within an energy range of 15 kcal/mol. The 

azirinyl cation (2) is the lowest energy isomer with the propargyl cation-like CNCH: and NCCH: 
= 

isomers 6.1 and 13.3 kcal/mol higher in energy, respectively; a linear isomer HCNCB+ (triplet 

ground state)lO is calculated to be 9.4 kcal/mol above 2. 
= The charges in the N and C 2p(n) 

orbitals of 2 are 0.70 and 0.65, respectively, and this complete delocalization of the two T- 
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electrons is reflected clearly in the ring dimensions. The calculated C-C and C-N bond lengths 

(1.3648 and 1.3842) are similar to the typically aromatic C-C bond length (1.3772) calculated 

in 1.4 

The CN2H+ isomer of lowest energy is linear HNCN+ (triplet), which is placed 12.1 kcal/ 

mol below 2 (triplet) and 36.9 kcal/mol below 2 (singlet). The latter two ions may be the 

CN2H+ species observed in the mass spectra of diaaomethane and diazirine, respective1y.l' The 

calculated energy separation (25 kcal/mol) is in accord with the difference in estimated heats 

of formation (16 kcal/mol).ll The HNCN+ ion has a N(H)-C bond length of 1.2038 and a C-N bond 

length of 1.4342, corresponding to a major contribution from the resonance structure H-kc-N. 

An analogous major resonance structure is implied in 2, where the bond lengths are EN = 1.1968 

and N-N = 1.433x. As in &and &, the n-electrons are delocalized in 2 with 2p(s) populations 

on N and C of 0.68 and 0.63, respectively. The calculated N-N and C-N bond lengths are 1.4042 

and 1.3752. 

Thus the thermodynamic stability of the three-membered rings relative to the lowest 

energy open isomers decreases substantially (-30 kcal/mol) for each N replacing a CH group.12 

The stabilization 

cation may be determined 

0 

energy due to delocalization of the n-electrons in the cyclopropenyl 

as 69.5 kcal/mol (6-31G*//STO-3G) from the exothermicity of reaction 

A+A ------a A+A (1) 

Reactions (2) and (3), which compare the cyclopropene-cycLopropeny1 cation pair with the l- 

azirine-azirinyl and 3H-diazirine-diazirinyl cation pairs, are exothermic by 37.6 and 77.8 kcal/ 

mol, respectively. This scheme consequently predicts (by subtraction of (2) and (3) from (1)) a 

"delocalization energy" of 31.9 kcal/mol for 2 and -8.3 kcal/mol (!) for 3 i.e. a reduction by = =' 
nearly 40 kcal/mol occurs for every nitrogen introduced, despite that g and zwere calculated 

as having complete delocalization of the 8-electrons and "aromatic" geometries. Although simple 

Hickel theory does predict a diminishing resonance energy upon aza-substitution,13 u-effects 

must certainly account for a large part of the loss in stabilization energy. 

The atomic net charges calculated in f. indicate that a significant fraction of the excess 

positive charge is situated on the hydrogen atoms. Progressive exchange of CH with N localizes 

the charge on fewer atoms, leading to a differential increase in electrostatic repulsion in the 

rings over the open structures. The larger electronegativity and hence electronic demands of 

nitrogen apparently require at least one n-electron per nitrogen, viz. l-azirine and 3H- 

diazirine, which both feature a regular double bond and are experimentalLy known. The resulting 

need for nitrogen to acquire compensation through polarization of the o-systems gets reflected 

in the energies of the upper occupied molecular orbitals (Table). 
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The three highest lying occupied MO's in 1-2 are the n-orbital and two Walsh type o- 

orbitals; the latter (6&l) are degenerate in 1 and positioned slightly below the n-orbital. The 
-- 

Walsh orbitals feature weak bonding with ?r-type overlap taking place outside the ring between 

nonoptimally directed atomic orbitals; (L) contains a directly antibonding component, but both 

do provide some C-H bonding. Aza substitution would tend to lower all the orbital energies due 

to the increase in effective nuclear charge, and the energy of the T-orbital does indeed 

decrease steadily by ca. 1.8 eV for each nitrogen added. In the azirinyl cation,orbital i is 

transformed into an orbital (5) with considerable lone pair character and almost no C-H bonding. 

Since exocyclic C-H bond orbitals possess large s character and lower energies than nitrogen 

lone pairs, the orbital is strongly destabilized and pushed above the T-orbital. Orbital 1 is 

stabilized ( -1.9 eV) in 2, since it involves exchange of the C 2-p orbital with a N 2p orbital. 

With two nitrogens in the ring, this orbital is severely destabilized (g), since the necessary 

o-withdrawal from C generates large nitrogen orbital coefficients and consequently strong anti- 

bonding; the large N-N distance in 2 (1.4048; the calculated N-N distance in 3H-diazirine is 

1.2668') results. In the equilateral NG isomer the degenerate orbitals are well separated as 

the HOMO's from the a-orbital.14 

The thermodynamic considerations presented (cyclic versus open Structures. delocalization 

energies) indicate that substituted azirinyl cations could well be stable in nonnucleophilic 

media, but that the isolation of diazirinyl cations represents a considerable challenge. There 

is also evidence for decreasing kinetic stability in the series A-2, if a correlation exists 

between kinetic stability and the HOMO-LUMO gap. I5 This orbital separation decreases from 17.5 

eV in 1 through 16.1 eV in zto 15.7 eV in 2. = Likely dissociation products for diazirinyl cat- 

ions XCNZ would be N2 and CX+. The reaction is calculated as endothermic by 35.4 kcal/mol for 

X=H, but a search at the STO-3G level for a simple substituent (e.g. CH3, CN, NH*) to further 

stabilize the ring has not been successful; the CX+ fragment gains substantial preferential sta- 

bility from the improved distribution of positive charge. Initial separation of a C-N bond 

might lead the dissociation through carbene-like intermediates. A bent singlet HCN: structure 

was located 15.1 kcai/mol (STO-3G//STO-3G) above gwith a long C-N bond length of 1.63x, indica- 

ting that the structure is only a loose complex. The corresponding triplet carbene opened up 

to the linear diazomethyl cation (2). 
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Table. Total (E) and Orbital (E) Energies for the Molecules L-2." 

__________------_-------_-_-_---_---------------_---_-__------_________________-_-_-__________ 

Molecule 1 2 3 z= = = 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~_~~~~-~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~______________~~~_-~~ 

E(STO-3G//STO-3G) -113.62032 -129.33930 -145.04438 

E(4-31G//STO-3G)c -I~4.81364~ -130.71736 -146.59033 

E(6-31G*//STO-3G) -115.00369 -i30.95777 -146.88241 

&(6-31G*//STO-3G) -20.6(n) -20.9 -22.4 

s(6-31G*//STO-3G) -21.3 -22.4(n) -23.3 

~(6-3lG*//STO-3G) -21.3 -23.1 -24.3(r) 
--------------------______________fl____~~~~~~~--~---_~~~-~---~-~----------------------------- 

(a) E in Hartrees, E in eV. (b) Reference 4. (c) 4-31G basis set from reference 8c. 
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